Integrating Structural and Functional Imaging for Computer Assisted Detection of Prostate Cancer on Multi-Protocol In Vivo 3 Tesla MRI.

نویسندگان

  • Satish Viswanath
  • B Nicolas Bloch
  • Mark Rosen
  • Jonathan Chappelow
  • Robert Toth
  • Neil Rofsky
  • Robert Lenkinski
  • Elisabeth Genega
  • Arjun Kalyanpur
  • Anant Madabhushi
چکیده

Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-protocol MRI by integrating functional and structural information obtained via dynamic-contrast enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation and multi-classifier modules for information fusion. Following prostate boundary segmentation via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-classifier used is a random forest constructed by bagging multiple decision tree classifiers, each trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 (DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data (data-level integration) significantly outperformed a decision-level meta-classifier, constructed by combining the classifier outputs from the individual T2-w and DCE channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy

With the wide array of multi scale, multi-modal data now available for disease characterization, the major challenge in integrated disease diagnostics is to able to represent the different data streams in a common framework while overcoming differences in scale and dimensionality. This common knowledge representation framework is an important pre-requisite to develop integrated meta-classifiers...

متن کامل

A Comprehensive Segmentation, Registration, and Cancer Detection Scheme on 3 Tesla In VivoProstate DCE-MRI

Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion...

متن کامل

Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE): Detecting Prostate Cancer on Multi-Parametric MRI.

Currently, there is significant interest in developing methods for quantitative integration of multi-parametric (structural, functional) imaging data with the objective of building automated meta-classifiers to improve disease detection, diagnosis, and prognosis. Such techniques are required to address the differences in dimensionalities and scales of individual protocols, while deriving an int...

متن کامل

The Role of MRSI in Target Volume Definition for Radiation Therapy of Prostate Cancer

Introduction: Recently, magnetic resonance spectroscopic imaging (MRSI), as a functional imaging method, has been used for clinical target volume definition. In this study, we used this method to define the target volume in prostate radiotherapy. Material and Method: In this study, we used images of 20 prostate cancer cases. MRSI and MRI images were fused with CT images. Then, treatment plannin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 7260  شماره 

صفحات  -

تاریخ انتشار 2009